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Abstract. Most of the known integrable nonlinear evolution equations have recursion 
operators which generate an infinity of infinitesimal transformations about any solution. 
Using this property we derive a simple criterion for the integrability of such an equation. 
The recursion operator also generates a hierarchy of related nonlinear evolution equations. 

1. Introduction 

A large class of nonlinear evolution equations (NLEE) solvable by the inverse spectral 
transform have been derived starting from a system of coupled linear equations 
(Ablowitz et a1 1974, Newel1 1979, Calogero and Degasperis 1976, 1977, Konopel- 
chenko 1980). The converse problem of deciding the integrability of a given NLEE 
is of great interest. One such method (Wahlquist and Estabrook 1975) exploits the 
fact that most of the known integrable NLEE arise as integrability conditions of a 
system of Pfaffians. See Kaup (1980) for a tutorial presentation of the method. The 
main difficulty in this method is the closure of the Lie algebra that is naturally generated 
in their approach. This difficulty has been overcome by Corones and Testa (1976) 
who have argued that to obtain the Backlund transformation and the associated 
spectral problem of a NLEE it is sufficient to consider just one pseudopotential. Another 
approach, due to Chen et al(1979),  exploits the existence of an infinity of conservation 
laws for an integrable NLEE. They prove the existence of four or five conserved 
quantities for a given NLEE, and infer the existence of an infinity of conserved quantities 
and hence the integrability of the NLEE. 

We prove the integrability of the NLEE 

by proving the existence of an infinity of infinitesimal transformations (IT) about any 
solution u(x, r )  of (1.1). This is established by proving the existence of a recursion 
operator T ( u ) ,  starting from ( l - l ) ,  and noting that u, (x ,  t )  is always an IT about u(x, r ) .  
Then T ( u )  acting repeatedly on u,(x, t )  gives an infinity of IT (hence the nomenclature 
for T ) .  The form of T ( u )  (with some undetermined constants) is found by noting 
that both u , ( x ,  t )  and K ( u )  are IT about U ( x ,  r ) .  The constants in T ( u  1 are determined 
from the condition that if y ( x ,  t )  is any IT so is T(u) {y (x ,  t ) } .  This condition leads to 
equation (2.8), which is the equation obeyed by the Lax pairs (Lax 1968), though the 
operators are different. 
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The importance of recursion operators has been discussed by various authors 
(Olver 1977, Wadati 1978, Fuchssteiner 1979, Fokas 1980, Ibragimov and Shabat 
1980, Fuchssteiner and Fokas 1981). It is clear from these that recursion operators 
also give another viewpoint to the study of integrable NLEE. Equation (2.8) has been 
derived by Fuchssteiner (1979) and Fokas (1980) though they have not used it to find 
the recursion operator. To our knowledge only Fokas (1980), starting from a NLEE 
of the form ( l . l ) ,  has derived its recursion operator. He has used the properties of 
the generators of the Lie-Backlund transformation to obtain conditions on classes of 
NLEE so that they have recursion operators. Our work gives another method for 
finding the recursion operator. 

To the question whether a recursion operator, when it exists, will always connect 
U, and K (U), we feel that it will be true only for NLEE arising from 2 x 2 scattering 
equations. In support of this conclusion we have the following two cases. 

The fifth-order NLEE (Sawada and Kotera 1974) 

ut + 30u,u,, + 3 0 ~ ~ 3 ,  + 180u *U, + usx = 0 (1.2) 

has a third-order scattering equation (Dodd and Gibbon 1977, Satsuma and Kaup 
1977) and the recursion operator is of the sixth order (Fuchssteiner and Oevel 1982). 
T acting on U, therefore does not give K ( u ) ,  but acting on U, and K ( u )  gives rise to 
two sets of IT. We have recently obtained a similar result (details to be published) 
for the coupled K d v  equation (Hirota and Satsuma 1981) 

1 
U t  = z u ~ ,  + ~ u u ,  -644x = K ~ ( U ,  d),  

4t = - d 3 x  - 3 ~ 4 ,  = K ~ ( u ,  4). (1.3) 

There is no recursion operator connecting the IT (U,, 4,) to the IT (Kl (u ,  4), K2(u, 4)). 
There is a fourth-order recursion operator T (a 2 x 2 matrix) connecting (ux, 4,) to 
the next fifth-order IT. It is also known that the linear scattering equation associated 
with (1.3) is of the fourth order (Dodd and Fordy 1982). More work on NLEE arising 
from higher-order scattering equations is necessary. 

In 0 2 we briefly develop the formalism and compare equation (2.8) with the Lax 
equation. The method of § 2 is applied to a NLEE in § 3 and a related hierarchy of 
NLEE generated. 

2. Development of the formalism 

If y ( x ,  t )  is an IT about a solution u ( x ,  t )  of (1.1), i.e. u ( x ,  t )+&y(x,  t )  is also a solution 
of (1.1) to terms linear in E ,  then 

The evolution equation for y ( x ,  t )  is then 

Equation (2.2) can be cast in the form 

[a /a t  + A(u ) ] { y  1 = 0. (2.3) 
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This defines the operator A, a linear operator depending on u ( x ,  t )  and its spatial 
derivatives. 

To obtain the recursion operator T ( u )  for the IT we note that u x ( x ,  t )  and K ( u )  
are solutions of (2.2), i.e. are IT about u ( x ,  t). We now look for the most general 
linear integro-differentia1 operator T(u  ) such that 

T ( u ) { u x ) = K ( u ) .  (2.4) 

This operator will have arbitrary constants and these are determined by the require- 
ment that if y ( x ,  t )  be any function satisfying (2.3) then so is T ( u ) { y } .  Thus we require 
that 

y r + A ( 4 { y ) = O  (2.5) 

(a la t ) [T(u){y}I+A(u){T(u){y}}  = 0. (2.6) 

T,{y} = (TA -AT){yJ. (2.7) 

implies 

From (2.5) and (2.6) we obtain 

A sufficient condition for (2.7) is 

TI = [T, A]. (2.8) 

If the IT y ( x ,  t )  form a complete set, as is the case (Aiyer 1982) for IT about n-soliton 
solutions of the K d v ,  then (2.8) is also necessary for (2.7) to be true. 

Equation (2.8) is the main equation for the integrability of (1.1). The operator d 
can always be obtained for any NLEE, whereas T can be obtained in many cases. 

We now establish the relation between the Lax pair (L,  A )  and the pair (T,  A). 
The pair (L,  A )  satisfies 

Lr = [L, AI, (2.9) 
where 

L* =5* (2.10) 

&=A* (2.11) 

is the eigenvalue equation of the linear spectral problems and 

describes the time variation of 4. On the other hand the adjoint T + ( u )  of the operator 
T ( u )  has eigenfunctions which are related to the squares of 4 of (2.10). This has 
been shown for certain NLEE by Ablowitz et a1 (1974) and Newell and Flaschka 
(1975). The operator A describes the time variation of the IT and it has been shown 
(Aiyer 1982) that the IT about the n-soliton solution of the K d v  are related to the 
spatial derivatives of the squares of 4. Thus (T ,A)  are operators similar to the pair 
& , A )  but related to the squares of the eigenfunctions of the associated spectral 
problem. This formalism therefore further stresses the role of the squares of eigenfunc- 
tions (Newell 1980, Kaup 1976). 

Chen et a1 (1979) have also obtained the pair (T,d) for a NLEE which we will 
consider in the next section. They have shown that for this equation the pair satisfies 
(2.8), and have therefore identified (T, A )  with the Lax pair (L, A ) .  This, from what 
precedes, is seen not to be correct. 
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3. Application-a particular example 

3.1. 

Consider the nonlinear equation 

(3.1) 2 ut -iuxx + 2  lu j U, = 0. 

The equation for y (x, t ) ,  an IT about U (x, r ) ,  is 
y, - iy,, + 2(/u 12y + uu,y * + U *u,y) = o (3.2) 

where * denotes complex conjugate. The operator d defined in (2.3) is 

A{y}= -ia2y/ax2 +20u 12yx + uu,y* + u*u,y). (3.3) 
To obtain the recursion operator T ( u )  we note that u,(x, t )  and -hXx + 21u 12u, are 

IT about any solution u(x, t )  of (3.1). The most general linear operator T ( u )  such that 

~ ( u  ){U,} = -iuxx + 2ju 12u, 
is given by 

y("+l)(x, t )  = T(u){y'"'(x, t ) }  

(3.4) 

=-iay'"'/ax +aluI y +@U, (u*y ' " '+uy ' " ' * )  dxl 
'"I I' 

(3.5) 
With y'") = U, one gets (3.4). With this choice of y'") the fourth term on the RHS of 
(3.5) vanishes identically, but does not for a general IT y'")(x, r ) .  This term therefore 
has to be included. a, p, p, y, S are constants, possibly complex. 

To determine these constants we demand that y'"+*)(x, t )  satisfies (3.2) if y'")(x, t )  
does, i.e. if y'")(x, t )  is an IT about u(x, t )  then so is y("+')(x, I ) .  We do not use 
equation (2.8) as this will require a 2 x 2 matrix formulation with fields U (x, t )  and 

The rest consists of long but straightforward algebra. We substitute y'"+')(x, t )  
given by (3.5) in (3.2). To eliminate yj"'(x, t )  and ur(x, t )  we use (3.1) and the fact 
that y("'(x, t )  satisfies (3.2). We equate to zero, separately, the coefficients of 
5 y'")  dx, y'")* dx, Y ' ~ ' ,  y'"'* and their spatial derivatives. Integrals involving spatial 
derivatives of y '")  are reduced by integrating by parts. A unique and consistent set 
of solutions for a, p, p, y, S is 

U *(x, t ) .  

a = p  = p  = 1, y = S = O .  (3.6) 
A recursion operator T ( u )  generating the IT about solutions of (3.1) therefore exists 
and (3.1) is integrable. From (3.5) and (3.6) the recursion operator T ( u )  acting on 
y(x, t ) ,  an IT about u(x, t ) ,  is 

T(u ){Y (x, ?,I 
= -iay/ax + Iu 12y +U, (U *y + u y  *) dxl I' 
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3.2. 

In analogy with the K d v ,  sine-Gordon and modified K d v  equations we can expect 

Ut + [ T ( u ) l " { u ~ ) =  0 (3.8) 

to be integrable for n = 0 , 1 , .  . . . [T(u)]"  is the nth power of the operator T ( u ) .  n = 1 
gives (3.1). n = 2 gives the NLEE 

(3.9) 4 2 u,+3lul ux -3iu*(u,) - 3 i l ~ / ~ u , ,  -U,,, =o. 
We have explicitly verified that the operators T ( u )  defined by (3.7) generate an infinity 
of IT about any solution of (3.9). 

4. Conclusions 

We have shown that starting from a NLEE (1.1), the recursion operator ?' for the IT 
can be found by using the facts that U, and K ( u )  are IT about any solution u ( x ,  t )  of 
(1-1), and that if y ( x ,  t )  is an IT so is T { y ( x ,  t ) } .  This provides a simple method for 
finding the recursion operator for a given NLEE and also proving its integrability. 
However, the existence of a recursion operator T connecting U, to K ( u )  seems to 
exist only for those integrable NLEE which arise from 2 x 2 scattering equations. 
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